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Problems of using proton-Lithium-6 (p
6
Li) fuel are energy losses that occur in a fusion reactor. 

Investigating the energy balance equation in this fuel is significant. The p
6
Li reaction is termed 

aneutronic, as it produces relatively few neutrons and requires none for breeding. The energy from the 
charged reaction products can be directly converted to electrical power at a much higher efficiency 
than Deuterium-tritium (DT). In this paper, the approach of optimum performance of p

6
Li fuel in fusion 

reactors was presented investigating the energy balance equations for ions and electrons. The 

optimum fuel mixture is almost 
p

6 Li

n
3

n
 . The performance was determined to be p

6
Li and is favorable for 

Ti=800 keV. 
 
Key words: Fuel, reactor, energy, radiation. 

 
 
INTRODUCTION 
 
Choice of suitable fuel for fusion reactors is subject to 
several conditions especially in terms of economic, safety 
and environmental parameters, while it is very difficult to 
satisfy all of them. Risks resulting from the release of 
radioactive materials run as a result of activation of 
equipment and presence of tritium in the plasma system. 
Each fusion plasma Deuterium-tritium (DT) releases 17.6 
MeV which turn into a kinetic energy with 3.5 MeV helium 
and 14.1 MeV neutron (Yu and Yu, 2009). 

 
 2 3

1 1 2

4D T He(3.5 MeV) n(14.1MeV)                                                                                        (1)  
                  (1) 

 
DT reaction has two major disadvantages: (1) It hurts the 
reactor equipments due to the production of  neutron,  (2) 
 

reproduction of tritium has more problem and it produces  
a radial space resulting  from blanket of lithium (Stott, 
2005). The deuteron-deuteron (DD) fusion plasmas are 
very attractive since deuterium is abundant and it 
eliminates the need for breed tritium. The produced 
neutrons are not a lot and they have less energy than DT 
plasma. However, there is atmospheric pollution due to 
tritium production through DD fusion plasmas. D

3
He 

plasma is called aneutronic which produces relatively few 
neutrons and nothing is needed for breeding. Energy 
resulted from the charged products can directly change 
into the electric power in a much higher efficiency than 
DT. Thus, to do the same radioactivity as the DT, higher 
temperatures 50 to 100 keV are needed. In general, one 
of the most important alternatives in future fusion reactors
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Figure 1. Cross -section as a function of energy for 
different plasmas (Momota et al., 1980). 

 
 
 

 
 

Figure 2. Average reactivity as a function of ion temperature 
for different plasmas (Momota et al., 1980). 

 
 
 

is D
3
He plasma. 

 

 
1 2

2 1

2

3

1

4D He He(3.6MeV) H(14.7 MeV)                                                                                        (2)   
                 (2) 

 

However, the share of “cleanless” has not been done in 
D

3
He completely due to production of neutrons and 

tritium through the DD side fusion plasma with equal 
probability as follows: 
 
 
1 1 1

2 2 3

1

1D D T(1.01MeV) H(3.02 MeV)                                                                                        (3)  
                       (3) 
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  2 2 3

1 1 2 n 2.45 MeVD D He(0.82MeV)                                                                                          (4)  
                (4) 

 
Since tritium does radioactive decay and neutron 
irradiation influences the reactor equipment, it is 
necessary to take some methods to limit the radioactivity 
caused by neutrons in order to prevent from releasing 
radioactive tritium. Another aneutronic fusion plasma is 
the plasma of proton with the lithium-6 (p

6
Li). This 

plasma: 

 
 3

3 2

6

2

4p Li He(1.7 He(2.3                                                                                   MeV)     M  (eV)   5)  
                    (5) 

 
is proposed due to the little load of  both components. 
Helium-3 would regress to plasma in the catalyzed mode 
and the plasma 

 
 

i ci si Li iei

d 3
( n T  P  +P P P  0                                                                                                  (7)

dt 2
)    

                                  (6) 

 
provides a very attractive net Q-value. This plasma is not 
ignitable in low temperatures and it has a very much 
energy losses in a fusion reactor. Therfore, the study of 
problems with p

6
Li plasma in a fusion reactor is 

significant.  

 
 
THE PROPERTIES OF P

6
LI PLASMA  

 
DT fusion reactors inherently encounter with economic 
and environmental challenges. Therefore, it is strongly 
emphasized to use a proper alternative among the 
advanced plasmas. In aneutronic fusion, instead of 
neutron, most of the energy is released through charged 
particles. In case of aneutronic plasmas such as D

3
He, 

the released tritium and the problems with radioactive 
wastes decreased. Neutron is produced indirectly through 
DD and DT side plasmas. D

3
He fusion reactor suffers 

from the following disadvantages: (1) Helium-3 is only 
available through the decay of tritium in proton bomb and 
also in the future space exploitation programs while just a 
few countries can afford it or it is produced in the fusion 
of deuterium-tritium; (2) D

3
He needs a higher 

temperature, a more beta and a better containment than 
DT plasma. p

6
Li fusion reaction is an aneutronic 

advanced fuel. Figures 1 and 2  show  a  cross-section  in 

terms of energy and average reactivity versus ion 
temperature for different plasmas, respectively. The p

6
Li 

fusion plasma has advantages: (1) decreases neutron 
production; (2) no need for Lithium blanket requirement; 
(3) reduces tritium inventory; (4) direct electrical 
conversion; (5) optimum chain plasma features. 
Unfortunately, it has disadvantages including: (1) high 
bremsstrahlung radiation; (2) produces indirect 
radioactive 

7
Be and 

11
C; (3) utilizes condensable plasma 

(
6
Li); and (4) high-temperature for ignition (Mily, 1981). 
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ENERGY BALANCE IN P

6
LI PLASMA  

 
It is necessary in the reactors that the input power be 
sufficiently low when it is compared to the power output 
for production of a great net power. The study of the p

6
Li 

plasma is important in equilibrium state. The conditions is 
different for "ideal ignition" and "ignition" cases. In "ideal 
ignition" which are lower sets for the operating 
temperature in the plasma. In “ignition” mode is 
restricted; the pressure, energy confinement time, and 
temperature for the plasma in stable mode under real 
condition. The mode of ignition is more practical in this 
plasma. It is assumed without external power for 
sustentation of the p

6
Li plasma. Here, ion and electron 

energy balance equations reviewed for this plasma. Ion 
energy balance equation as: 
 

 
i ci si Li iei

d 3
( n T  P  +P P P  0                                                                                                  (7)

dt 2
)    

                           (7) 
 

where ciP  is the amount of energy transferred from 

charged particles to ions per unit of time,
 siP is the 

injected power, LiP  is expended energy of each ion per 

unit of time and ieP  is the rate of energy losses by ions 

as the follow (Spitzer, 1940): 
 
 

 

3

2 2
28 e ei i i

ie e i e3 2 3
i i e e2

i e

m 0.3TZ n lnΛ T W
P 7.61 10 n 1 1 T T                                            (8)

m T m c cm
μ T



    
       

   


(8) 
  

Electron and ion temperature eT , iT  and the electron rest 

energy 
2

em c  are in eV , im is the ion mass 

( i i pm μ m , pm is the proton mass) and density n is in 

cm
-3

. The Coulomb logarithm is 
ne

lnΛ 31 ln( )
Te

 

 
 

(Fundamenski and Garcia, 2007). Electron energy 
balance equation is: 
 

 
e ce se ie Lee B C

d 3
( n T = P  +P +P -P -P -P =0                                                                                                 

d 2
)  (9)

t                          (9) 
 

In comparison with Equation 8, bremsstrahlung and 

cyclotron power are the different quantities. BP  is 

bremsstrahlung radiation power as follows (Nevins, 
1998): 
 
 2

32 2 2e e ei i
B e e 2 2 2 3

i e e e e

T T TZ n 3 W
P 1.62 10 n T   1 0.7936 1.874(   )      (10)

n m c m c m c cm2


   

      
   


(10) 
 

CP  is cyclotron radiation.  This  can  be  confined  by  the  

 
 
 
 
magnetic field in an inertial fusion reactor. The 

calculations show that the amount of iT =800keV
 
and 

eT 300keV
 
are almost ideal conditions with considered 

criteria. Fusion power per unit volume produced is: 
 
 

6 Li

19 2

f p fus   e fus     2 3

W
P n n συ E 1.602.10 n συ E                                                      (11)

( 3 ) cm





     
   (11) 

 

where fusE is the released energy (in eV) and 
p

6 Li

n

n
  . 

fP  is equal with 6p Li
P  . Investigations indicate that fP  is 

maximized for p
6
Li plasma by assuming 3   with 

eT 300keV
 
and 

2

e

5 -3n  10 cm= . The results show that 

fP  and BP increase with high eT  and en . Figure 3a 

displays the ideal iT
 

is 800 keV. In this state, BP  is 

minimized. Figure 3b shows that the ideal fuel mixture  is 

3  . In this factors, BP  is more than fP . Figure 4a 

shows that BP reduces with low eT . Figure 4b indicates 

that ie

f

P

P
decreases with eT  and low lnΛ . 

The investigations show iT  is also important in ie

f

P

P
 

value. ie

f

P

P
reduces with in low iT . BP

 
decreases in low 

eT  and it makes an enhancement in ie

f

P

P
. 

 
 
CONCLUSION 
 
This study is showed that for the ignition of p

6
Li fuel in a 

fusion reactor, two important problems would emerge; the 
lossed energy and the need for high-temperature 

electrons and ions. iT  is obtained by the use of

 

B

f

P

P
. It 

has been determined that the operation iT
 
is almost 800 

keV. Coulomb logarithmic decreased to lnΛ 5  and 

improved p
6
Li plasma performance. In this case, BP  is 

more than fP . At high eT , radiation losses are very 

much. Calculations show BP  and fP  increase with high 

eT  and en . BP  is minimized with creating appropriate fuel 

composition. BP  increases with high eT . Also, eT   and  

iT  are impressible  in ie

f

P

P
. 
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                 a                                                                                       b  

 

Figure 3. PB/Pf  as a function of  (a) Ti (b)   (red color for  ln 20   and  green color ln 5  ). 

 
 
 

 
 a                                                                           b  

 

Figure 4. (a) PB/Pf ; (b) Pie/Pf ; as a function of Te  (red color for  ln 20   and  green color ln 5  ). 
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Predicting the arrival time of Coronal Mass Ejections (CMEs) with a lower value of average error of the 
difference between the predicted and the observed transit time is very crucial in space weather 
forecast. A modified Empirical Coronal Mass Ejection Arrival (ECA) model was proposed, namely, Ojih-
Okeke modified ECA model to predict the transit time of twenty eight fast CMEs from the sun to the 
earth. This is the first time the Ojih-Okeke modified ECA model is being applied in prediction of transit 
time of CMEs from the sun to the earth. The proposed modified model was tested using data obtained 
from coronagraph observations of large angle spectrometric aboard, the Solar and Heliospheric 
Observatory (SOHO/LASCO) CME catalogue from the period of 1997 to 2015. To ascertain the accuracy 
of the modified model, the three ECA model of Gopalswamy (G2000, G2001, and VG2002) were applied 
to our data points. Linear regression analyses were carried out on the data points and scatter plots 
were generated using excel software package. The average error of the difference between the CMEs 
transit time and models predicted transit time with their fractional errors were 4.27 h and 0.10 for the 
Ojih-Okeke modified model; 10.36 h and 0.23 for the VG2002 model; 12.93 h and 0.29 for G2001 model; 
and 14.42 h and 0.32 for the G2000 model. The proposed modified model has proved very effective in 
prediction of arrival time of CMEs. It is our recommendation that future work on prediction of the arrival 
time of CMEs be carried out employing our modified ECA model. 
 
Key words: Coronal mass ejections, arrival time, intense geomagnetic storm, observed transit time, earth and 
phase. 

 
 
INTRODUCTION 
 
Coronal Mass Ejections (CMEs) are released from the 
sun’s surface into space as massive burst of solar 
materials  consisting  of  magnetic  fields  and  clouds   of 

plasma. They are the most destructive of all solar events. 
CMEs may accelerate up to a speed of 3000 kms

-1
 and 

gradually propagate through  the  solar  wind,  away  from 
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the sun (Yashiro et al., 2001). CMEs are known to be the 
major cause of severe geomagnetic disturbances which 
is often referred to as space weather (Zhang et al., 2001; 
Cheng et al., 2014; Cyr et al., 2000; Mishra and Tripathi, 
2005). There are several space weather phenomena 
which tend to be associated with or are caused by 
geomagnetic storm. These include Solar Energetic 
Particles (SEP) events which are hazardous to humans, 
Geomagnetically Induced Current (GIC) which cause 
damages to satellites and electrical grid, ionospheric 
disturbances which may lead to radio and radar 
scintillation, disruption of navigation by magnetic 
compass. Therefore, predicting the arrival time of CMEs 
becomes necessary for this will serve as a practical way 
of getting advance warning of solar disturbances heading 
towards the earth, save billions of currency that would 
have been used to repair or replace damaged satellites 
and electrical grids, identify communication problems, 
help high altitude flight management and make provisions 
for renewable energy sources to protect the earth against 
black out. 

Most researchers have predicted the arrival time of 
CMEs to 1 AU employing different models. Gopalswamy 
et al. (2001) developed an Empirical Coronal Mass 
Ejection Arrival (ECA) model to predict the arrival time of 
CMEs. From their prediction, they discovered that the 
average error of the difference between the predicted 
CMEs arrival time and the observed transit time was 11 
h. Owens and Cargil (2004) investigated the three ECA 
models of Gopalswamy known as G2000, G2001 and 
VG2002 to predict the arrival time of CMEs to the earth 
using 35 CME – ICME data obtained from Advanced 
Composition Explorer (ACE) and Solar and Heliospheric 
Observatory (SOHO) from November 1997 to April 2001 
with CME speed at the sun as input parameter. They 
asserted that the average error of the difference between 
the CMEs observed transits time and the predicted 1 AU 
CMEs arrival time was approximately 11 hrs. Further 
work was carried out in other to obtain a lower value. 
Therefore Gopalswamy et al. (2005) later developed an 
Empirical Shock Arrival (ESA) model to predict the arrival 
time of CMEs. The average error between the predicted 
CMEs arrival time and the observed transit time was 
found to be 12 h. Interestingly, the time interval was 12 h, 
this increment is not encouraging. 

Okeke et al. (2011) used the three empirical models of 
Golpalswamy (G2000, G2001 and VG2002) to predict the 
arrival time of twenty-nine Halo CMEs. Their result 
showed that the average error of the difference between 
the CMEs observed transit time and the predicted transit 
time were 15, 12 and 10 h, respectively. They concluded 
that the errors remained significant and suggested that 
the model should be enhanced. Mostl et al. (2014) used 
three geometrical models, namely, Self-Similar 
Expansion Fitting (SSEF), the Fixed Point Fitting (FPF) 
and Harmonic Mean Fitting (HMF) to predict the arrival 
time  of  22  CMEs.  The  SSEF  fitting  technique   allows  

 
 
 
 
flexibility for the CME width in the solar equatorial plane 
than the FPF or the HMF (extremely wide). The fixed 
point fitting model assumes a point like CME without any 
extension in heliocentric longitude. The self-similar 
expansion model could be seen as a generalization of the 
fixed point fitting and harmonic mean fitting. All methods 
share the same assumption of constantly CME speed 
and direction but differ on the description of the global 
shape of the CME front. Their results showed that the 
average error the difference between the CMEs observed 
transit time and the predicted arrival time was 10.9 h.  

Tong et al. (2015) carried out a statistical study of 21 
earth directed CMEs using the Graduated Cylindrical 
Shell and Drag Force Model. The average error of the 
difference between the predicted and observed transit 
time was found to be 12.9 h. This high value of 12.9 h is 
very alarming and disturbing. Carolina et al. (2017) 
studied the arrival time of eleven coronal mass ejections 
using microwave radio emissions as a proxy. Their result 
showed an average error between the observed and 
predicted transit time to be 11 h for microwaves and 9 h 
for soft X-ray (S X R). The results of all the 
aforementioned findings showed that the average error of 
the difference between the CMEs observed and the 
predicted transit time is still large. Predicting the arrival 
time of CMEs with a minimal average error between the 
CMEs observed and the predicted transit time has been a 
major issue in the field of Heliophysics. 
 
 

MATERIALS AND METHODS 
 

The Coronal Mass Ejections data used were procured from Large 
Angle Spectrometric Coronagraph aboard, the Solar and 
Heliospheric Observatory (SOHO/LASCO) CME catalog on website 
(http://cdaw.gsfc.nasa.gov/CMElist/index.html). Only CMEs with 
initial speed of 900 kms-1 and above (fast CMEs) that were associated 
with geomagnetic storms with Dst≤-100 nT were selected. The 
geomagnetic storm data were obtained from World Data Centre for 
geomagnetism Kyoto Japan. Multiple CMEs were avoided as they may 

lead to CME-CME interaction which may in turn affect the transit time. 
The CMEs selected were Halo CMEs, it has been established that Halo 
CMEs are the most geo-effective having ability to cause geomagnetic 
storm. In order to ascertain the accuracy of the model, the three 
ECA model of Gopalswamy were also applied to the data points.   
 
 

Theory of Ojih-Okeke modified ECA model 
 

The authors assumed that: (1) fast CMEs undergo three phases, as 
they travel from sun to earth: a deceleration which ceases before 
0.1 AU, a constant speed propagation until about 0.45 AU and a 
gradual deceleration to 1 AU; (2) CMEs travel with solar wind speed 
from 0.45 to 1AU. The transit time of CMEs from the sun to the 
earth is given by: 
 

 +       (1) 

 

where U is CMEs initial speed, W is the solar wind speed, 

d1=0.08AU, d2= (0.45AU-0.08AU), d3= (1AU-0.45AU), = 10-3 
(0.0054U-2.2) and = 10-3 (0.0054W-2.2). 



 
 
 
 
Theory of Gopalswamy et al. (2000) model: Constant 
acceleration or deceleration 
 
The author assumed that the acceleration was constant between 
the sun and IAU so that the total effective interplanetary 
acceleration (α1) undergone by an interplanetary coronal mass 
ejection (ICME) is: 
 

a1 =       

 
where V (IAU) is the ICME speed at IAU (1 AU, U is astronomical 
unit) and U is the CME initial speed. 

The linear fit to data plot gave an empirical for the effective 
acceleration a1 = 1.41 – 0.00035U. To improve the model by 
minimizing the projection effects in determining the initial speed of 
the CMEs, the author used the archival data from spacecraft in 
quadrature and this led to an improved formula of  a2 = 10-3(2.193 – 
0.0054U). 

This can then be used in the kinematic equation: 
 

S=Uτ +  

 
The transit time (τ) of the CMEs from sun to earth is given by: 
 

                                            (2) 

 
where U is the CMEs initial speed, α2 is acceleration and S is the 
distance between the sun and earth. 
 
 
Theory of Gopalswamy et al. (2001) model: Cessation of 
acceleration before IAU 
 
The model assumes that ICME acceleration ceased at a 
heliocentric distance of 0.76 AU for all CMEs irrespective of their 
initial speed. Therefore, the total transit time from sun to IAU is the 
sum of the travel time to 0.76 AU at constant acceleration, and the 
travel time from 0.76 AU to IAU at constant speed. 
 

 =   +                                             (3) 

 
where a2 is an effective interplanetary acceleration that was derived 
empirically from quadratic observations of CMEs, U is initial speed 
of CMEs and d is the acceleration cessation distance (0.76 AU). 
 
 
Theory of Vrsnak and Gopalswamy (2002) model: Aerodynamic 
drag 
 
The model was proposed for estimating the ICME transit time when 
the only force acting upon the ICME in interplanetary space is the 
aerodynamic drag. They assumed that the drag force was linearly 
proportional to the relative velocity.  

The equation of motion of an ICME at some heliocentric distance 

R (R=  where r is heliocentric radius and  is solar radius given 

by: 
 

 
 = α (V-W) 
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where α and β are constants that parameterize the drag as a 
function of distance and speed is given  
by Sheeley et al. (1997) as; 
 

W(R) =  

 

where  is the asymptotic solar wind speed = 400 km ). 

Writing this in terms of R gives: 
 

 
 
Numerical integration from the low corona (R=10), where it is 
assumed that V=U to IAU then gives V(R), V is CMEs speed at R = 
10. 
 

τ =                                                                               (4) 

 
Equations 1, 2, 3, and 4 were applied to the CMEs data to calculate 
the predicted arrival time for each model. The difference between 
the CMEs observed transit time and the model’s predicted transit 
(∆τ) were calculated. The average error and fractional error of the 
difference between the CMEs predicted transit and observed transit 
time for each model was calculated.  

 
 
RESULTS 
 
The average error between the observed and predicted 
transit time and fractional errors are shown in Table 1. 
Scatter plots of CMEs predicted transit time as function of 
CMEs initial speed were generated for each model. 
 
 
DISCUSSION 
 
The model equations were applied to the CMEs data. 
The difference between the CMEs predicted and 

observed transit time (∆τ = τmod – τobs) were calculated 

for each model. The average error between the CMEs 
observed and the predicted transit time and the fractional 
error for each model were also calculated. Table 1 shows 
the summary of the average error and fractional error 
between the CMEs observed and predicted transit time 

(∆τ) and fractional error of twenty eight fast coronal mass 

ejection events associated with intense geomagnetic 
storm observed from the period of 1997 to 2015. The 
average error and fractional error of the difference 
between the CMEs observed and the predicted transit 
time for Gopalswamy 2000 (G2000) model were 14.42 h 
and 0.33. This result obtained for the G2000 model is in 
close agreement with the result of Okeke et al. (2011) 
who obtained the average error between the CMEs 
observed and predicted transit time of 14.83 h and 
fractional error of 0.57.  

The average error of the difference between the CMEs 
observed and the predicted transit time and the fractional 
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Table 1. Summary of the average error and fractional error in the model. 
 

Model  < > h < / > 

Ojih-Okeke modified model 4.27 0.10 

VG  2002 10.36 0.23 

G2001 12.93 0.29 

G2000 14.42 0.33 
 

The table presents the summary of the average error and fractional error obtained in the models. Column 1 
represents the empirical models, column 2 is the average error of the difference between the CMEs predicted and 
observed transit time (∆τ)  and column 3 is the fractional error between the CMEs predicted and observed transit 

time in each model’. 
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Figure 1. A plot CMEs observed transit time as a 
function of CMEs initial speed. 

 
 
 
error obtained for Gopalswamy 2001 (G2001) model 
were 12.93 h and 0.29, respectively. The average error 
between the CMEs predicted transit time and the 
observed transit time obtained for the Vrsnak and 
Gopaswmy, 2002 (VG2002) is 10.36 h while the 
fractional error is 0.23. The average error between the 
CMEs predicted and observed transit time obtained for 
the Ojih-Okeke modified model was 4.27 h with fractional 
error of 0.10. The error in Ojih-Okeke modified model is 
likely traceable to geometrical effects. According to 
Carolina et al. (2017), CMEs is a curved 3-D structure, 
the measured arrival time depends on which part of 
CMEs is being sampled and also CMEs become 
deformed in the interplanetary medium with an elongation 
taking place in a direction perpendicular to the principal 
direction of the motion. 

Figure 1 show a scatter plot of the CMEs observed 
transit time as a function of CMEs initial speed. The linear 
correlation coefficient obtained from the scatter plot is -
0.65 the negative correlation shows that as speed 
increases, time decreases. Figures 2, 3, 4 and 5 show the 
scatter plots of CMEs predicted transit time as function of  
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Figure 2. A plot CMEs predicted transit time as a 
function of CMEs initial speed for Ojih-Okeke modified 
model.  
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Figure 3. A plot of CMEs predicted transit time as a function of 
CMEs initial speed for VG2002 model. 

 
 
 

CMEs initial speed for Ojih –Okeke modified model, 
VG2002 model G2001 model and G2000 model. The 
values of the linear correlations coefficients obtained from 
the scatter plots  are  -0.74  for  the  Ojih-Okeke  modified 
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Figure 4. A plot of CMEs predicted transit time as a 
function of CMEs initial speed for G2001model. 
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Figure  5. A plot CMEs predicted transit time as a function of 
CMEs initial speed for G2000 model. 

 
 
 
model; -0.82 for VG2002 model; -0.81 for the G2001 
model and -0.81 for G2000 model. These values of linear 
correlation coefficients obtained from the four models 
depict that there exist a strong correlation between CMEs 
transit time and CMEs initial speed. 

Figures 6, 7, 8 and 9 show the scatter plots of the 
difference between the predicted transit time and the 
observed transit time (∆τ) as function of CMEs initial 

speed for Ojih-Okeke modified model, G2001 model, 
VG2002 model, and G2000 model, respectively. The 
G2000 model, G2001 model and the VG2002 model 
predict all the 28 events corresponding to 100% earlier 
than observed. It is obvious that the G2000, G2001 and 
VG2002 models underestimate the CMEs transit time as 

the plots show large negative distribution of ∆τ Hence, 

the need for the development of a modified model. The 
modified model predict 18  events  out  of  the  28  events  
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Figure 6. A plot of the difference between the CMEs 
predicted and observed transit time as a function CMEs 
initial speed for Ojih-Okeke modified model. 
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Figure 7. A plot of the difference between the CMEs 
predicted and observed transit time as a function CMEs 
initial Sp speed for VG2001 model. 
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Figure  8. A plot of the difference between the CMEs 
predicted and observed transit time as a function CMEs 
initial speed for G2002 model. 
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Figure 9. A plot of the difference between the CMEs 
predicted and observed transit time as a function CMEs 
initial speed for G2000 model.  

 
 
 

corresponding to 64.29% earlier than observed and 10 
events corresponding to 35.71% later than observed. 
Although there are still some slight deviations between 
the predicted transit time and the observed transit time as 
observed from the plots. The cause of these slight 
deviations was attributed to geometrical effect. 
Geometrical effects due to two reasons, firstly CME is a 
curved 3-D structure and the measured arrival time 
depends on the part of the CME that is being sampled by 
SOHO coronagraph. Secondly, CME becomes deformed 
in the interplanetary medium with elongation taking place 
in a direction perpendicular to the principal direction of 
the motion. 

Some researchers attributed the error in CMEs 
predicted transit time to projection effects. Owens and 
Cargil (2004) in their analysis of the cause of error 
asserted that projection effect has no significant 
difference between the values obtained with projection 
effects and when projection was removed. 
 
 
Conclusion 
 
The Ojih-Okeke modified ECA model was applied to 
predict the transit time of 28 fast CMEs associated with 
intense geomagnetic storm (Dst≤-100 nT) obtained from 
the period of 1997 to 2015. Inferences drawn from our 
results show that the average error of the difference 
between the CMEs observed transit time and the 
modified model’s transit time and fractional error were 
much lower than those obtained from the earlier models. 
Comparing the results obtained from the four models, the 
Ojih-Okeke modified model proved the most accurate 
model for predicting the arrival time of fast CMEs. This is 
the first time the modified model is being applied to 
predict the transit time of CMEs from the sun to the earth. 
It is therefore recommended that future work on 
prediction of the arrival time of CMEs be carried out 
employing Ojih-Okeke modified ECA model. 

 
 
 
 
CONFLICT OF INTERESTS 
 
The authors have not declared any conflict of interests. 
 
 
ACKNOWLEDGEMENTS 
 
The authors acknowledge the world data centre for 
Geomagnetism, Kyoto Japan, for providing the 
geomagnetic storm data and the CDAW Data centre by 
NASA and the Catholic University of America in 
Cooperation with the Naval Research laboratory for 
providing the CME catalog. 
 
 
REFERENCES 
 
Carolina SM, Karl L, Gerard T (2017). Microwave radio emission as a 

proxy for coronal mass ejection arrival speed in predictions of 
interplanetary coronal mass ejections at IAU. Space Weather Space 
Climate J. 7:A2. 

Cheng L, Shen YZ, Bin A, Ye MP, Wang S (2014). Full Halo coronal 
mass ejections arrival at the earth. http:// space.ustc.edu. Cn 
/dreams/.fhcmes/. 

Cyr OC, Raymond JC, Thompson BJ, Gopalswamy NK, Kahler SK, 
Lara N, claravella A, Romol N, Oneal R (2000). SOHO and Radio 
observation of CME shock Wave. Geophys. Res. Letters J. 
27(10):1439-1442. 

Gopalswamy N, Lara A, Lepping RP, Kaiser ML, Berdichevsky D, Cyr 
OC (2000). Interplanetary acceleration of coronal mass ejections. 
Geophys. Res. Lett. J. 27:145. 

Gopalswamy N, Alejandro L, Russel A H (2001). Predicting the I-AU 
arrival times of coronal mass ejections. Geophys. Res. J. 
106(A12):29, 207-209, 217. 

Gopalswamy N, Alejandro L, Yashiro S, Kaiser ML, Howard RA (2005). 
An empirical model to predict the 1-AU arrival of interplanetary 
shocks. Adv. space res. J. 36(12):2289-2294.  

Mishra AP, Tripathi RM (2005). Characteristics features of CMEs with 
respect to their source region. Proceeding of the 29th International 
Cosmic Ray Conference, Pune, India 1:149. 

Mostl CK, Amla JR, Hall PC, Liewer EM,  Jong RC, Colaninno AM, 
Galvin AB (2014). Connecting speeds , directions and arrival time of 
22 Coronal Mass Ejection from the Sun to 1AU. Astrophysi. J. 
V5/2/11. 

Okeke FN, Okpala KC, Akaogu V (2011). Predictions of the arrival time 
of Coronal Mass Ejection (CME) and its contributions to major 
Geomagnetic storms. Nig. J. Space Res. 10:217-230. 

Owens M, Cargil P (2004). Predictions of the arrival time of Coronal 
Mass Ejection at IAU: an analysis of the causes of errors. 

Sheeley NR, Wang YM, Hawley SH, Bruckner GE, Dere, KP, Howard 
RA, Koomen MJ, Korendyke CM, Michels DJ, Paswaters SE, Socker 
DG, St. Cyr OC, Wang D, Lamy PL, Liberia A, Schwenn R, Simnett 
GH, Plunkett S Biesecker DA (1997). Measurements of the flow 
speed in the corona between 2 and 30 rs. Astrophys. J. 484:472.  

Tong S, Yikang W, Linfeng W, Xin C, Mingde D, Jie Z (2015). Predicting 
the arrival time of coronal mass ejection with the graduated cylindrical 
shell and drag force model. Astrophys. Res. letters J. 806:2. 

Vrsnak B, Gopalswamy N (2002). Influence of aerodynamic drag on the 
motion interplanetary ejecta. J. Geophys. Res. 107:10.1029/2001/JA 
000120.   

Yashiro SN, Gopalswamy GM, Cyr OC, Plunkett SP, Rich NB, Howard 
RA (2001). A catalog of white light coronal mass ejections observed 
by the SOHO Spacecraft. J. Geophys. Res. 109(A):7105. 

Zhang J, Wang T, Zhang C, Liu Y, Nitta N, Slater GL, Wang J (2001). 
Flare-CME events association with a super activeregion recent 
insight into the Physics of the Sun and heliosphere: Highlights from 
SOHO and other space missions. Pal Brekke (Eds), Proceedings of 
IAU Symposium. P 203. 



 

 

International Journal of 

Physical Sciences 

Related Journals Published by Academic Journals 

  

 African Journal of Pure and Applied Chemistry 

 Journal of Internet and Information Systems 

 Journal of Geology and Mining Research 

 Journal of Oceanography and Marine Science 

 Journal of Environmental Chemistry and Ecotoxicology  

 Journal of Petroleum Technology and Alternative Fuels  


	Front Template
	Bahmani et al
	Ojih and Okeke
	Back Template

